Integrated Math 2/3 Essentials

Course Preparedness Profile & Expectations

Students should have a "C" or higher in Integrated Math 1. This non-college-preparatory course is designed for students who need additional supports for success on the 11th grade state assessment.

Below are some guidelines for choosing the best course for an individual student. This is *not* a placement test and it should *not* be used as the only criteria for making placement decisions.

Student Background

Students entering **Integrated Math 2/3 Essentials** should *already* have a good understanding of the following concepts:

- Understanding radicals and integer exponents
- Understand the connection between proportional relationships, lines, and linear equations.
- Solving linear equations as well as apply graphical and algebraic methods to analyze and solve systems of linear equations in two variables.
- Understanding arithmetic and geometric sequences and their relationship to linear and exponential functions.
- Defining, evaluating, and comparing functions, and use them to model relationships among quantities.
- Understanding congruence using transformational geometry.
- Solving real-world and mathematical problems using linear and exponential mathematical models.

Students entering Integrated Math 2/3 Essentials should also be able to solve problems such as

Word Problem: Data Analysis Problem: Charlie and Joey are looking at incomplete table: Katherine measures the heights, in inches, of 16 of her classmates to be: 73, 63, 64, 67, 71, 68, 66, 68, 71, 74, f(x) 54 67, 70, 69, 70, 64 and 72. Create a histogram for the heights of her classmates. Find and interpret the 5-Charlie says that $a=19\frac{1}{3}$ and $b=26\frac{2}{3}$. Joey claims that number summary, the mean, and the mode for this data a = 6 and b = 18. Their teacher says that both answers are valid. Explain how each student came up with their values for a and b. Word Problem: Construction Problem: Susan deposits \$90 in a bank account that pays 2% Construct a regular hexagon using a compass and interest annually. Create a function B(t) that represents straightedge. Explain how you know the shape the amount of money in the bank account t years after created is a regular hexagon. Susan's deposit. What is B(18) and what does it represent? Using a graphing utility, solve and interpret B(t)=270. Rigid Motion Problem: Function Problem: Triangle ABC, with vertices A(1,1), B(2,-3) and Find an explicit and recursive rule for the function that C(0,5), undergoes the following transformations: fits the data in the table. Calculate f(10). Graph the • A reflection through the line y = xfunction and determine its domain and range. X • A rotation of 90 degrees about A. 15 f(x) 5/3 45 • A translation of 2 units up and 3 units left. What are the coordinates of the vertices of the triangle after it has undergone these three transformations?

Course Content and Expectations

In Integrated Math 2/3 Essentials, students will learn concepts such as:

- Manipulating algebraic expressions, including rearranging, collecting terms, factoring, applying properties of exponents, and transforming expression between different forms.
- Understanding properties of quadratic and polynomial equations (roots, vertices, forms, intervals of increasing/decreasing, end behavior, etc.)
- Understanding the concept of a function, domain, and range, and identifying properties of functions and graphs.
- Interpreting functions given graphically, numerically, symbolically, and verbally.
- Modeling with functions using tables, functions, and understanding when the context allows for a model that is only an approximation.
- Constructing and comparing linear, exponential, quadratic and polynomial models to solve real-life problems.
- Writing, interpreting, and translating among various forms of quadratic equations.
- Using similarity to define and solve problems using right-triangle trigonometry.
- Calculating and interpreting probability using a variety of models, theories, and experiments.

As in all math courses offered at SDUHSD, students are aware of and make use of all **Standards for Mathematical Practices:**

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Students will be expected to work collaboratively as well as individually. On a regular basis, classes will include:

- Group problem solving followed by group presentations.
- Open ended problems that are applications of the content being covered.
- Challenge problems, which may consist of detailed diagrams and a single page write-up.

This course is a below grade level course which may also have an individualized remediation component.